Part Number Hot Search : 
RZ1100 112A433 17400 ADJ51024 C812M20 SA1140 64096 HM2P0
Product Description
Full Text Search
 

To Download 10-FY06BIA050SG-M523E18 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  10-FY06BIA050SG-M523E18 preliminary datasheet flowsol 1 bi 600v/50a low inductive 12mm flow1 package booster: dual boost topology high-speed igbt + ultrafast fwd bypass rectifier inverter: h-bridge topology high-speed igbt + ultrafast fwd integrated dc-capacitors temperature sensor solar inverter: 10-FY06BIA050SG-M523E18 tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition features flow1 12mm housing types primary of a transformer based solar inverter with resonant switching transformer-less solar inverter with bipolar modulation with high efficiency/cost ratio target applications schematic parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 39 t c =80 c 53 t h =80 c 46 t c =80 c 69 maxi mum junction temperature t j max 150 c input boost igbt collector-emitter break down voltage v ce 600 v t h =80c 39 t c =80 c 52 t h =80 c 83 t c =80 c 126 ga t e-emitter peak voltage v ge 20 v t sc t j 150c 5 s v cc v g e = 15v 400 v max imum junction temperature t j max 175 c t j =t j m ax t j =25c t j =t j max t p =10ms p tot power dissipation per diode i 2 t dc co l lector current i2t-value i fav a 2 s i fsm condition dc current 370 370 i cpulse t p limited by t j max repet itive peak collector current i c p tot a a a w w a t j =t j max power dissipation per igbt 150 bypass diode forward current per diode surge forward current short circuit ratings 1 revi sion: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition input boost inverse diode t h =80c 19 t c =80 c 25 t h =80 c 39 t c =80 c 47 input boost diode t h =80c 23 t c =80 c 27 t h =80 c 40 t c =80 c 60 h-bridge igbt t j =t j max t j =25c t j =t j max t p limited by t j max t j =25c v ce v 600 150 a c 150 600 120 collector-emitter break down voltage repetitive peak forward current i f peak repetitive reverse voltage peak repetitive reverse voltage dc forward current w c a v i frm a dc fo rward current i f p tot power dissipation per diode powe r dissipation maximum junction temperature a v t j =t j max w t j =t j max t p limited by t j max 600 20 t j =2 5c maxi m um junction temperature t j max repe t itive peak forward current v rrm v rrm t j max p tot i frm t h =80c 39 t c =80 c 52 t h =80 c 83 t c =80 c 126 t sc t j 150 c 5 s v cc v ge = 15v 400 v h-bridge diode t h =80c 23 t c =80 c 31 t h =80 c 40 t c =80 c 60 dc link capacitor tc=25c v c c a t j =t j max 20 t j =2 5 c t j =t j max 150 t j =t j m a x 600 15 0 i cpulse t p limited by t j max a a w t j =t j max v a w p tot repetitive peak forward current maxim um junction temperature i frm t j max maxim um junction temperature v rrm dc collector current gate - emitter peak voltage i c t j max v ge dc forward current powe r dissipation per diode t p limited by t j max p tot repetitive peak collector current short circuit ratings peak repetitive reverse voltage i f power dissipation per igbt 175 max .dc voltage v max 630 120 v 2 revi sion: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition thermal properties insulation properties v is t=2s dc vol tage 4000 v min 12,7 mm min 12,7 mm c storage temperature t stg -40+125 c -4 0 +(tjmax - 25) clearance insulation voltage creepage distance t op operation temperature under switching condition 3 revi sion: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet param eter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 1,16 1,21 tj=125c 1,11 tj=25c 0,90 tj=125c 0,76 tj=25c 0,01 tj=125c 0,01 tj=25c 0,05 tj=125c thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,53 k/w tj=25c 4,1 4,9 5,7 tj=125c tj=25c 1,94 2 tj=125c 2,22 tj=25c 0,04 tj=125c tj=25c 100 tj=125c tj=25c 23 tj=125c 21 tj=25c 13 tj=125c 14 tj=25c 185 tj=125c 207 tj=25c 5 tj=125c 7 tj=25c 0,62 tj=125c 0,96 tj=25c 0,47 tj=125c 0,71 50 3140 none 15 rgoff=4 rgon=4 gate emitter threshold voltage collect or-emitter saturation voltage v ce(sat) collector-emitter cut-off integrated gate resistor i ges gate-emitter leakage current t f i ces r gint turn-off delay time e on t d(off) rise time turn-on delay time e off t r input capacitance turn-on energy loss per pulse fall time reverse current input boost igbt value co nditions i r v ge(th) bypass diode v to r t characteristic values forward voltage thresh old voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f 35 35 1600 35 ma v v 0,0008 50 0 0 600 20 1 5 4 00 turn-off energy loss per pulse c ies t d(on) na ma mws v v ns thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,15 k/w tj=25c 1,25 1,67 1,95 tj=125c 1,56 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,44 k/w t j=25c 2,34 2,6 tj=125c 2,01 tj=25c 100 tj=125c tj=25c 47 tj=125c 72 tj=25c 15 tj=125c 29 tj=25c 0,51 tj=125c 1,23 tj=25c 0,07 tj=125c 0,16 di(rec)max tj=25c 15400 /dt tj=125c 10220 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,76 k/ w 5 0 400 25 93 310 25 tj=25c tj=25c 30 50 10 400 15 c oss q gate rgon=4 t rr f=1mhz c rss e rec forward voltage diode forward voltage output capacitance reverse transfer capacitance input boost inverse diode 200 peak r ecovery current peak rate of fall of recovery current reverse recovery charge reverse recovery time reverse recovered energy 0 reverse leakage current gate charge input boost diode q rr 15 v f f=1mhz i rrm v f i rm 0 pf ns mws a a/s c v v a nc 4 rev ision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet param eter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value c ondit ions characteristic values tj=25c 4,1 4,9 5,7 tj=125c tj=25c 1,94 2 tj=125c 2,22 tj=25c 0,04 tj=125c tj=25c 100 tj=125c tj=25c none tj=125c tj=25c 22 tj=125c 22 tj=25c 13 tj=125c 14 tj=25c 182 tj=125c 204 tj=25c 4 tj=125c 7 tj=25c 0,61 tj=125c 0,89 tj=25c 0,42 tj=125c 0,67 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,15 k/w tj=25c 2,33 2,6 tj=125c 2,01 0 480 600 tj=25c 400 t r input capacitance fall time vge=vce diode forward voltage c rss output capacitance reverse transfer capacitance q gate h-bridge diode gate charge c oss h-bridge igbt integrated gate resistor gate- e mitter leakage current collector-emitter saturation voltage r gint i ges v ge(th) collector-emitter cut-off incl diode gate emitter threshold voltage v ce(sat) i ces turn-off energy loss per pulse turn-on energy loss per pulse turn-on delay time t f t d(off) t d(on) turn-off delay time rise time e on c ies rgon=4 f=1mhz e off 0 25 tj=25c 15 0,0008 50 50 50 50 20 15 0 rgoff=4 15 v f 93 200 310 ma v na ns ns ns pf pf pf mws mws v nc v ns 3140 tj=125c 2,01 tj=25c 51 tj=125c 75 tj=25c 16 tj=125c 29 tj=25c 0,49 tj=125c 1,24 di(rec)max tj=25c 14960 /dt tj=125c 10600 tj=25c 0,06 tj=125c 0,18 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,76 k/w 4 00 mws 22000 nf +5 50 q rr t rr peak reverse recovery current diode forward voltage reverse recovery energy reverse recovered charge e rec reverse recovery time 50 mw/k rated resistance ? r/r deviat ion of r25 % power dissipation constant power dissipation p mw 200 2 r 15 thermistor c value dc link capacitor c v f i rrm peak rate of fall of recovery current a/s ns c a v tj=25c t=25c t=25c t=25c -5 47 r100=1486 b-value b (25/50) tol. 3% tj=25c rgon=4 k vincote ch ntc reference b (25/100) tol. 3% b-value b tj=25c 3996 3950 k 5 rev ision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet figure 1 igbt figure 2 igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 2 50 ? s t p = 2 50 ? s t j = 2 5 c t j = 125 c v g e from 7 v t o 17 v in steps of 1 v v ge from 7 v t o 17 v in steps of 1 v figure 3 igbt figure 4 fwd typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage h-bridge typical output characteristics 0 50 100 1 5 0 200 0 1 2 3 4 5 i c (a) v ce (v) 0 50 100 1 5 0 200 0 1 2 3 4 5 i c (a) v ce (v) i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 2 50 ? s t p = 2 50 ? s v ce = 10 v 0 10 20 30 4 0 5 0 0 2 4 6 8 10 i c (a) v ge (v) t j = 25 c t j = t jma x - 25 c 0 30 60 90 1 2 0 150 0 1 2 3 4 5 i f (a) v f (v) t j = 25 c t j = t jm a x -25 c 6 rev ision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet figure 5 igbt figure 6 igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f (r g ) with an inductive load at with an inductive load at t j = 25/1 2 5 c t j = 25/12 5 c v ce = 400 v v ce = 4 00 v v ge = 15 v v ge = 1 5 v r gon = 4 i c = 50 a r gof f = 4 figure 7 f wd figure 8 fwd typical reverse recovery energy loss typical reverse recovery energy loss h-bridge e on h i gh t e off h igh t e on l o w t e off l ow t 0,0 0,5 1, 0 1 ,5 2,0 2,5 3,0 3,5 0 25 50 75 100 e (mws) i c (a) e off h igh t e on h i gh t e on l o w t e off l ow t 0 1 1 2 2 3 3 4 0 10 20 3 0 4 0 e (mws) r g (  ) as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/1 2 5 c t j = 25/12 5 c v ce = 400 v v ce = 4 00 v v ge = 15 v v ge = 1 5 v r gon = 4 i c = 50 a e rec h i gh t e rec l o w t 0,00 0,05 0 , 10 0,15 0,20 0,25 0,30 0 25 50 75 100 e (mws) i c (a) e rec h i gh t e rec l o w t 0,00 0,05 0 , 10 0,15 0,20 0,25 0 10 20 30 40 e (mws) r g (  ) 7 rev ision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet figure 9 igbt figure 10 igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f (r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v c e = 400 v v ce = 4 00 v v ge = 15 v v ge = 1 5 v r gon = 4 i c = 50 a r gof f = 4 figure 1 1 fwd figure 12 fwd typical reverse recovery time as a typical reverse recovery time as a h-bridge t doff t f t don t r 0,00 0,01 0 , 10 1,00 10,00 0 25 50 75 100 t (ms) i c (a) t doff t f t don t r 0,00 0,01 0 , 10 1,00 10,00 0 8 16 24 32 40 t (ms) r g (  ) function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 2 5/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 40 0 v v ge = 15 v i f = 50 a r g on = 4 v ge = 15 v t rr low t 0,00 0,02 0 , 04 0,06 0,08 0,10 0 8 16 24 32 40 t rr (ms) r gon (  ) t rr h i gh t t rr h i gh t t rr l o w t 0,00 0,01 0 , 02 0,03 0,04 0,05 0 25 50 75 100 t rr (ms) i c (a) t rr h i gh t 8 rev ision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet figure 13 fwd figure 14 fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at t j = 2 5/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 40 0 v v ge = 15 v i f = 50 a r g on = 4 v ge = 15 v figure 15 fwd figure 16 fwd typical reverse recovery current as a typical reverse recovery current as a h-bridge q rr h i gh t q rr l o w t 0 0,3 0, 6 0 ,9 1,2 1,5 0 10 20 30 40 q rr (mc) r gon ( w ) q rr h i gh t q rr l o w t 0,0 0,4 0, 8 1 ,2 1,6 2,0 0 25 50 75 100 q rr (mc) i c (a) function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 2 5/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 40 0 v v ge = 15 v i f = 50 a r g on = 4 v ge = 15 v i rrm h igh t i rrm l ow t 0 20 40 60 8 0 1 00 0 10 20 30 40 i rrm (a) r gon (  ) i rrm l ow t 0 10 20 30 4 0 5 0 60 70 0 25 50 75 100 i rrm (a) i c (a) 9 rev ision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet figure 17 fwd figure 18 fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt, di rec /dt = f(r gon ) at at t j = 2 5/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 40 0 v v ge = 15 v i f = 50 a r g on = 4 v ge = 15 v figure 19 igbt figure 20 fwd igbt transient thermal impedance fwd tr ansient thermal impedance h-bridge di 0 /dt t di rec /dt t 0 5000 1 0 000 15000 20000 25000 0 10 20 30 40 di rec / dt (a/ms) r gon (  ) di rec /dt t di o /dt t 0 2000 4 0 00 6000 8000 10000 12000 14000 16000 18000 0 25 50 75 100 di rec / dt (a/ms) i c (a) as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 1,15 k /w r thjh = 1,76 k /w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,09 2,0e+00 0,06 4,8e+00 0,33 3,2e-01 0,17 7,6e-01 0,51 9,4e-02 0,70 1,6e-01 0,16 1,5e-02 0,53 5,1e-02 0,05 2,3e-03 0,19 1,1e-02 0,12 1,6e-03 z thjh (k/w) t p (s) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0, 1 0 ,05 0,02 0,01 0,005 0.000 z thjh (k/w) t p (s) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0, 1 0 ,05 0,02 0,01 0,005 0.000 10 re vision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet figure 21 igbt figure 22 igbt power dissipation as a collect or current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 c t j = 175 c v g e = 15 v figure 23 fwd figure 24 fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) h-bridge 0 40 80 12 0 1 60 0 50 100 150 200 p tot (w) t h ( o c) 0 10 20 30 4 0 5 0 60 0 50 100 150 200 i c (a) t h ( o c) 100 40 at at t j = 150 c t j = 150 c 0 20 40 60 8 0 0 5 0 100 150 200 p tot (w) t h ( o c) 0 10 20 30 0 5 0 1 00 150 200 i f (a) t h ( o c) 11 re vision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet figure 25 igbt figure 26 igbt safe operating area as a function gate v oltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q g ) at at d = s ingle pulse i c = 50 a th = 80 oc v ge = 15 v t j = t j max oc h-bridge i c (a) v ce (v) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 0 2 4 6 8 10 12 14 1 6 0 50 100 150 200 250 300 350 v ge (v) q g (nc) 120v 480v 12 re vision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet figure 1 boost igbt figure 2 boost igbt typical output characteristics typical output characteristics i d = f(v ds ) i d = f(v ds ) at at t p = 2 50 ? s t p = 2 50 ? s t j = 2 5 c t j = 125 c v gs from 7 v t o 17 v in steps of 1 v v gs from 7 v t o 17 v in steps of 1 v figure 3 boost i gbt figure 4 boost fwd typical transfer characteristics typical diode forward current as i d = f(v gs ) a funct ion of forward voltage i f = f(v f ) input boost 150 60 0 50 100 1 5 0 200 0 1 2 3 4 5 i c (a) v ce (v) 0 50 100 1 5 0 200 0 1 2 3 4 5 i c (a) v ce (v) at at t p = 250 ? s t p = 2 50 ? s v ds = 10 v 0 30 60 90 1 2 0 0 1 2 3 4 5 i f (a) v f (v) t j = 25 c t j = t jm a x -25 c 0 10 20 30 4 0 5 0 0 2 4 6 8 10 i d (a) v gs (v) t j = 25 c t j = t j m ax -25 c 13 re vision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet figure 5 boost igbt figure 6 boost igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i d ) e = f (r g ) with an inductive load at with an inductive load at t j = 25/1 2 5 c t j = 25/12 5 c v ds = 400 v v ds = 4 00 v v gs = 15 v v gs = 1 5 v r gon = 4 i d = 50 a r gof f = 4 figure 7 b oost fw d figure 8 boost fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector (drain) current as a function of gate resistor input boost e off h igh t e on h i gh t e on l o w t e off l ow t 0 0,2 0, 4 0 ,6 0,8 1 1,2 1,4 1,6 1,8 2 0 25 50 75 100 e (mws) i c (a) e off h igh t e on h i gh t e on l o w t e off l ow t 0 1 2 3 4 5 0 10 20 3 0 4 0 e (mws) r g ( w ww w ) e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/1 2 5 c t j = 25/12 5 c v ds = 400 v v ds = 4 00 v v gs = 15 v v gs = 1 5 v r gon = 4 i d = 50 a r gof f = 4 e rec l o w t 0 0,05 0 , 1 0,15 0,2 0,25 0 25 50 75 100 e (mws) i c (a) e rec h i gh t e rec l o w t 0 0,05 0 , 1 0,15 0,2 0,25 0 10 20 30 40 e (mws) r g ( w ww w ) 14 re vision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet figure 9 boost igbt figure 10 boost igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i d ) t = f (r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v d s = 400 v v ds = 4 00 v v gs = 15 v v gs = 1 5 v r gon = 4 i c = 50 a r gof f = 4 figure 1 1 boost fw d figure 12 boost fwd typical reverse recovery time as a typical reverse recovery time as a input boost t doff t f t don t r 0,001 0,01 0 , 1 1 10 0 25 50 75 100 t ( m s) i d (a) t doff t f t don t r 0,001 0,01 0 , 1 1 10 0 8 16 24 32 40 t ( m s) r g ( w ww w ) function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 2 5/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 40 0 v v ge = 15 v i f = 50 a r g on = 4 v gs = 15 v t rr h i gh t t rr l o w t 0 0,02 0 , 04 0,06 0,08 0,1 0 10 20 30 40 t rr ( m s) r gon ( w ww w ) t rr h i gh t t rr l o w t 0 0,02 0 , 04 0,06 0,08 0 25 50 75 100 t rr ( m s) i c (a) 15 re vision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet figure 13 boost fwd figure 14 boost fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25/1 2 5 c tj = 25/125 c v ce = 400 v v r = 400 v v ge = 15 v i f = 50 a r gon = 4 v gs = 15 v figure 1 5 boost fw d figure 16 boost fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor input boost q rr h i gh t q rr l o w t 0 0,3 0, 6 0 ,9 1,2 1,5 0 10 20 30 40 q rr ( m c) r gon ( w ) q rr h i gh t q rr l o w t 0 0,4 0, 8 1 ,2 1,6 2 0 25 50 75 100 q rr ( m c) i c (a) i rrm = f(i c ) i rrm = f(r gon ) at at t j = 2 5/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 40 0 v v ge = 15 v i f = 50 a r g on = 4 v gs = 15 v i rrm h igh t i rrm l ow t 0 20 40 60 8 0 1 00 0 8 16 24 32 40 irrm (a) r g on ( w ww w ) i rrm h igh t i rrm l ow t 0 10 20 30 4 0 5 0 60 70 80 90 0 25 50 75 100 irrm (a) i c (a) 16 re vision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet figure 17 boost fwd figure 18 boost fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt, di rec /dt = f(r gon ) at at t j = 2 5/1 2 5 c tj = 25/125 c v ce = 400 v v r = 400 v v ge = 15 v i f = 50 a r gon = 4 v gs = 15 v figure 1 9 boost i gbt figure 20 boost fwd igbt/mosfet transient thermal impedance fwd transient therm al impedance as a function of pulse width as a function of pulse width input boost 0 5000 1 0 000 15000 20000 25000 30000 0 10 20 30 40 di rec / dt (a/ m s) r gon ( w ) di 0 /dt di rec /d t 0 2000 4 0 00 6000 8000 10000 12000 14000 16000 18000 0 25 50 75 100 di rec / dt (a/ m s) i c (a) di 0 /dt di rec /d t z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 1,15 k /w r thjh = 1,76 k /w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 9,49e-02 2,03e+00 5,96e-02 4,76e+00 3,34e-01 3,24e-01 1,66e-01 7,60e-01 5,08e-01 9,38e-02 6,99e-01 1,60e-01 1,62e-01 1,49e-02 5,26e-01 5,15e-02 4,63e-02 2,34e-03 1,89e-01 1,12e-02 0,00e+00 0,00e+00 1,23e-01 1,64e-03 z thjh (k/w) t p (s) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0, 1 0 ,05 0,02 0,01 0,005 0.000 z thjh (k/w) t p (s) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0, 1 0 ,05 0,02 0,01 0,005 0.000 17 re vision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet figure 21 boost igbt figure 22 boost igbt power dissipation as a collect or/drain current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 o c t j = 175 oc v g s = 15 v figure 23 boost fw d figure 24 boost fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) input boost 0 40 80 12 0 1 60 0 50 100 150 200 p tot (w) th ( o c) 0 10 20 30 4 0 5 0 60 0 50 100 150 200 i c (a) th ( o c) 100 40 at at t j = 150 oc t j = 150 oc 0 20 40 60 8 0 0 5 0 100 150 200 p tot (w) t h ( o c) 0 10 20 30 0 5 0 1 00 150 200 i f (a) t h ( o c) 18 re vision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet figure 2 5 boost i gbt figure 26 boost igbt safe operating area as a function gate v oltage vs gate charge of drain-source voltage i d = f(v ds ) v gs = f(qg) at at d = s ingle pulse i d = 50 a t h = 8 0 oc v gs = 15 v t j = t jm ax oc input boost i d (a) v ds (v) 10 3 10 0 10 -1 10 1 10 2 10 3 10 0 1 100us 1ms 10ms 100ms dc 10 2 10 1 0 2 4 6 8 10 12 14 1 6 0 50 100 150 200 250 300 350 u gs (v) qg (nc) 120v 480v 19 re vision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet figure 1 bypass diode figure 2 bypass diode typical diode forward current as diode tr ansient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 2 50 ? s d = t p / t r thjh = 1,528 k/w figure 3 bypass diode figure 4 bypass diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) bypass diode 0 10 20 30 4 0 5 0 60 70 0 0,3 0,6 0,9 1,2 1,5 i f (a) v f (v) t j = 25 c t j = t jm a x -25 c z thjc (k/w) t p (s) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0, 1 0 ,05 0,02 0,01 0,005 0.000 at at t j = 150 oc t j = 150 oc 0 20 40 60 8 0 1 00 0 50 100 150 200 p tot (w) t h ( o c) 0 10 20 30 4 0 5 0 60 70 0 50 100 150 200 i f (a) t h ( o c) 20 re vision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet figure 1 inp. boost inverse diode figure 2 inp. boost inverse diode typical thyristor forward current as thyrist or transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 2 50 ? s d = t p / t r thjh = 2,44 k /w figure 3 inp. b oost inverse diode figure 4 inp. boost inverse diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature inp. boost inverse diode 0 10 20 30 4 0 0 0 ,5 1 1,5 2 2,5 3 i f (a) v f (v) t j = 25 c t j = t jma x - 25 c z thjc (k/w) t p (s) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0, 1 0 ,05 0,02 0,01 0,005 0.000 p tot = f(t h ) i f = f(t h ) at at t j = 17 5 o c t j = 175 oc 0 15 30 45 6 0 7 5 0 50 100 150 200 p tot (w) t h ( o c) 0 5 10 15 20 2 5 3 0 0 50 100 150 200 i f (a) t h ( o c) 21 re vision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet figure 1 thermistor typical ntc characteristic as a function of temperature r t = f(t) thermistor 0 4000 8 0 00 12000 16000 20000 24000 25 50 75 100 125 r/  t (c) ntc-typical temperature characteristic 22 re vision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet t j 125 c r gon 8  r goff 8  figure 1 h -brid ge igbt figure 2 h-bridge igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = 0 v v ge ( 0 %) = 0 v v ge (1 00%) = 15 v v ge ( 100%) = 15 v v c (1 00%) = 400 v v c ( 100%) = 400 v i c ( 100%) = 50 a i c (1 00%) = 50 a t dof f = 0,33 ? s t do n = 0,03 ? s t eo ff = 0,39 ? s t eo n = 0,19 ? s figur e 3 h-brid ge igbt figure 4 h-bridge igbt switching definitions h-bridge igbt general conditions = = = i c 1% v ce 9 0 % v ge 90% -50 0 50 100 150 -0,1 0 0,1 0,2 0,3 0,4 0,5 % time (us) t doff t e o ff v ce i c v ge i c 10 % v ge 1 0 % t don v ce 3% -50 0 50 100 150 200 250 3,95 4 4,05 4,1 4,15 4,2 4,25 % time(us) i c v ce t eon v ge turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 400 v v c ( 100%) = 400 v i c ( 100%) = 50 a i c (1 00%) = 50 a t f = 0, 01 ? s t r = 0 ,02 ? s fitted i c 10% i c 90% i c 60 % i c 40 % - 25 0 25 50 75 100 125 0,26 0,28 0,3 0,32 0,34 0,36 % time (us) v ce i c t f i c 10 % i c 90% -50 0 50 100 150 200 250 3,95 4 4,05 4,1 4,15 % time(us) tr v ce i c 23 re vision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet figure 5 h-bridge igbt figure 6 h-bridge igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 19,99 kw p on (100%) = 19,99 kw e off (100%) = 0,80 m j e on (100%) = 1,20 m j t eoff = 0,39 ? s t eo n = 0,19 ? s figur e 7 h-brid ge igbt figure 8 h-bridge fwd gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t rr switching definitions h-bridge igbt i c 1% v g e 90% -20 0 20 40 60 80 100 120 -0,1 0,1 0,3 0,5 % time (us) p off e off t eoff v ce 3 % v g e 10% -20 20 60 100 140 180 3,9 4 4,1 4,2 4,3 % time(us) p on e on t eon 20 (v) 120 % i d v geoff = 0 v v d (10 0%) = 400 v v ge on = 15 v i d (1 00%) = 50 a v c (1 00%) = 400 v i rr m (100%) = -56 a i c ( 100%) = 50 a t rr = 0 ,03 ? s q g = 2 70,7 2 nc -5 0 5 10 15 -5 0 0 50 100 150 200 250 300 v ge qg (nc) i rrm 1 0% i rrm 90% i rrm 100% t rr -120 -80 -40 0 40 80 4 4,04 4,08 4,12 4,16 time(us) v d fitt e d 24 re vision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet figure 9 h-bridge fwd figure 10 h-bridge fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 50 a p re c (100%) = 19,99 kw q rr (100%) = 1,16 ? c e re c (100%) = 0,13 m j t qrr = 0,10 ? s t er ec = 0,10 ? s sw itching definitions h-bridge igbt t qrr -1 5 0 -100 -50 0 50 100 150 4 4,05 4,1 4,15 4,2 % time ( us) i d q rr -25 0 25 50 75 1 0 0 125 4 4,05 4,1 4,15 4,2 % time(us) p rec e re c t erec 25 re vision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet version ordering code in datamatrix as in packaging barcode as without thermal paste 12mm housing 10-FY06BIA050SG-M523E18 m523e18 m523e18 ordering code & marking ordering code and marking - outline - pinout outline pins 3,4,7,14 are not connected. pins 27 and 30 have to be connected together pins 31 and 34 have to be connected together pinout 26 re vision: 1 copyright by vincotech
10-FY06BIA050SG-M523E18 preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: product status datasheet status definition this datasheet contains the design specifications for product development. specifications may change in any manner without notice. the data contained is exclusively intended for technically trained staff. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. target preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 27 rev ision: 1 copyright by vincotech


▲Up To Search▲   

 
Price & Availability of 10-FY06BIA050SG-M523E18

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X